DIAMOND’S MODEL OF INSTRUCTIONAL DEVELOPMENT

Josh Petty
ETT 510
Dr. Nick Omale
2 September 2014
Diamond’s model was created by Robert M. Diamond (pictured) in 1989. Diamond was a professor of instructional design, development, and evaluation and of higher education at Syracuse University in Syracuse, New York.
BACKGROUND AND USES

• Diamond’s model of instructional development (ID) was created to be used by institutions of higher learning.

• Focuses on individual classes, as well as complete curriculum.

• Stresses sensitivity toward political and social issues on campus and within individual departments within the college/university.
• Making sure that ID follows organizational priorities and missions is unique to this model.

• Diamond’s model believes that ID should be completed as a team. More specifically by individuals and personnel that assist faculty.

• This model is divided up into two distinct phases.
 • Project Selection and Design
 • Production, Implementation, and Evaluation
PHASE ONE – PROJECT SELECTION AND DESIGN

Project Generation and Selection

Basic Planning Inputs (Project Specified)
- Domain of Knowledge
- Student Knowledge, Attitude, and Priorities
- Societal Needs
- Research
- Educational Priorities

Project Specific Factors
- Research
- Goals
- Time
- Resources
 - Human
 - Materials
 - Facilities
 - Fiscal
- Students
 - Number
 - Location

The “Ideal” Selection

Operational Sequence
PROJECT SELECTION AND DESIGN

• Is this project wanted, needed, or achievable?

• Considerations
 • Enrollment
 • Effectiveness of current courses
 • Priorities within the college/university
 • Enthusiasm within faculty/staff

• Focuses on the “ideal” solution
Design teams are more effective in creating solutions because they are more creative and innovative.

Once a plan is “green lighted,” a plan is created which focuses on
- Goals
- Timeline of Events
- Resources (human, materials, facilities, fiscal)
- The needs of the student (enrollment and facilities)
PHASE TWO – PRODUCTION, IMPLEMENTATION, AND EVALUATION

Determine Objectives
Select Instructional Formats
Evaluate and Select Existing Materials
Produce and Field Test New and Available Materials
Coordinate Logistics for Implementation
Implement, Evaluate, and Revise

Design Evaluation Instruments and Procedures
PRODUCTION, IMPLEMENTATION, AND EVALUATION

• Seven Step Process
 • Determine Objectives
 • Next Three Steps Take Place at the Same Time
 • Design Evaluation Instruments and Procedures
 • Select Instructional Formats
 • Evaluate and Select Existing Materials (Will they work in the new system?)
 • Create New Materials and Modify Existing Ones
 • Coordinate Logistics for Implementation
 • Implement, Evaluate, and Revise
PRODUCTION, IMPLEMENTATION, AND EVALUATION

• In most models, field testing and creation of materials are included in different steps. They are included in the same step in Diamond’s model.

• Revision of the process is included in the last step of the model.
PLEASE NOTE

The phase charts for Diamond’s model were recreated using Microsoft PowerPoint by Josh Petty. They are the same charts featured on page 55 of the Branch and Gustafson (2002) reading.
ADVANTAGES

• Creates curriculum that focuses on how students learn, as well as course content
• Continual assessments are used to see if the new curriculum is doing what it was designed to do
• Reduced number of “Turf Wars” – People fighting for their subject area
• Involves many different views (administration, faculty, and other stakeholders)
DISADVANTAGES

• Project success depends on teamwork within a school’s faculty. I currently work at a school with a very divided staff so this model would not work here.
Robert Diamond’s model was used to revise the biology curriculum at California State University, Fullerton (and other schools within the California State University system). The project was started in 1995, and the first pilot classes were introduced in 2002. Diamond’s model was not exclusively used, however Ono (2005) believes that a stronger use of Diamond’s model would have compacted the process from start to finish.
REFERENCES
